SPECIMEN PAPERS

SET 3

Paper 2 SL

Time allowed: 1 hour 30 minutes.

A calculator and the data booklet are required.

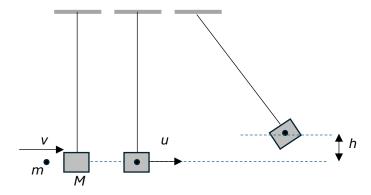

The total number of marks for this paper is 50.

1. The graph shows the black body spectrum of a star.

3

4

5



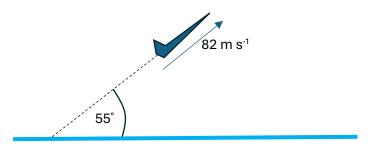
(a) Determine the surface temperature of the star. [2]

8

 $\frac{1}{10} \lambda / \times 10^{-7} \text{m}$

- (b) On the axes draw a graph to show the black body spectrum of another star with a higher surface temperature than that of the star in (a). [1]
- **2.** A pellet of mass m moving at horizontal speed v collides with a block of mass M that hangs from a vertical string. The pellet gets stuck in the block. The pellet and block move together with initial speed u raising their center of mass by a maximum height h.

The following data are available:

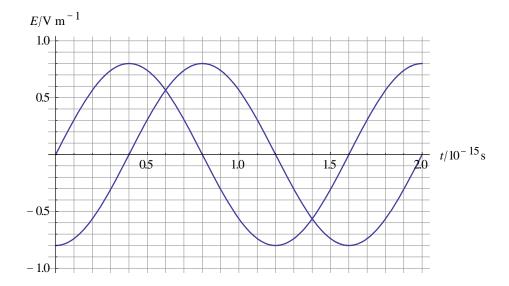

$$m = 0.025 \text{ kg}$$

$$M = 1.20 \text{ kg}$$

$$v = 65 \text{ m s}^{-1}$$

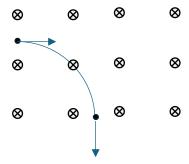
(a)	Calcu	ate <i>u</i> .	[2]
(b)	Deteri	mine the maximum height <i>h</i> .	[2]
3.	uniform The e	e of mass 8100 kg is taking off from an aircraft carrier. The mass stands at the end of 82 m s ⁻¹ over no end of the end of 82 m s ⁻¹ over no end of the	r a distance of 120 m. o exerts a constant force
(a)	Calcul		541
	(i)	the time taken to take off,	[1]
	(ii)	the average power developed by the engine,	[1]
	(iii)	the force due to the catapult wire.	[2]

(b) After takeoff the plane is climbing at an angle of 55° to the horizontal with constant speed 82 m s⁻¹. The magnitude of the air resistance force is unchanged.

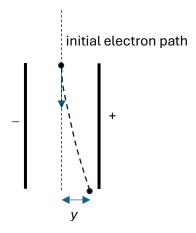


(i)	State and explain whether the plane is in equilibrium.	[2]
(ii)	Calculate the thrust force due to the engine.	[2]

4. Coherent light is incident on two narrow parallel slits. An interference pattern is formed on a screen far from the slits.


(a) The graph shows the variation with time of the displacement *E* of the waves arriving at a point P on the screen from each of the slits.

	(i)	Outline why the unit for the displacement is given as V m ⁻¹ .	
	(ii)	Calculate the wavelength of the waves.	[2]
	(:::\	Data was in a thin when a difference is between the	ro1
	(iii)	Determine the phase difference between the waves.	[2]
(b)	State a or neitl	and explain whether P is at the center of a bright fringe, the center of a dar her.	k fringe [2]


5. An ideal gas is confined within a container of volume 0.12 m³ at pressure 2.0×10⁵ Pa and temperature 310 K. (a) Calculate the number of molecules of the gas. [2] (b) (i) Calculate the average kinetic energy of the molecules. [1] (ii) Determine the internal energy of the gas. (c) The pressure of the gas is kept constant and the volume is varied. Draw a graph to show the variation with volume *V* of the internal energy *U* of the [2] gas. 0 (ii) State, by reference to the kinetic theory of gases, **one** feature of the graph in (i) that would not apply to a real gas. [1]

(a) Th	ne protons in the nucleus repel each other. Outline how nuclei can be stabl	e. [2]
	nucleus of tritium (3_1 H) decays by beta minus decay into helium. The reaction is 3_1 H $\rightarrow ^2_7$ He+ e $^-$ + ?	on
	tate the proton and nucleon number of the helium nucleus produced and st ame of the missing particle.	ate th [3]
Nucle	n number: eon number: ng particle:	
(c) TI	he following atomic masses are available:	
Tritiur Heliui		
(i)	Calculate the energy released.	[2]
(ii)	State and explain whether the electron produced in the reaction in (b) ha kinetic energy equal to the energy found in (c)(i).	[2]
(d) Aı	n electron produced in the decay of tritium has kinetic energy 0.45×10 ⁻² Me at the speed of this electron is about 4×10 ⁷ m s ⁻¹ .	V. Sh [2]
th		
th 		

Show that the radius of the electron is given by $R = \frac{m_c v}{eB}$.	[1]
Determine the time the electron spent in the region of magnetic field.	[2]
Suggest why the speed of the electron remains constant while in the r magnetic field.	egion of
	Determine the time the electron spent in the region of magnetic field. Suggest why the speed of the electron remains constant while in the region of magnetic field.

(f) The electron in (e) enters the region between two parallel oppositely charged plates after leaving the region of magnetic field. The electric field strength in between the plates is 5.8×10⁴ N C⁻¹. The time spent in between the plates is 2.2×10⁻⁹ s.

Determine the deviation <i>y</i> of the electron from its original straight-line path.	

Markscheme

1		
а	Peak wavelength 5.0×10^{-7} m \checkmark $T = \frac{2.9 \times 10^{-3}}{5.0 \times 10^{-7}} = 5800 \text{ K} \checkmark$	[2]
	$T = 2.9 \times 10^{-3}$	
	$I = \frac{1}{5.0 \times 10^{-7}} = 3800 \text{ K}$	
b	I_{λ}	[1]
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Blue curve above red curve with peak shifted left ✓	

2		
а	$mv = (m+M) \ u \Rightarrow u = \frac{mv}{m+M} \checkmark$ $u = \frac{0.025 \times 65}{0.025 \times 65} = 1.326 \text{ m s}^{-1} \checkmark$	[2]
	0.025×65 $m+M$	
	$u = \frac{0.023 \times 63}{1.326} = 1.326 \text{ m s}^{-1} \checkmark$	
	0.025 + 1.20	
b	$\frac{1}{2}(m+M)u^2 = (m+M)gh \checkmark$	[2]
	$u^2 1.326^2$	
	$h = \frac{u^2}{2g} = \frac{1.326^2}{2 \times 9.8} = 9.0 \times 10^{-2} \text{ m} \checkmark$	

3				
а	i	$s = \frac{u+v}{2}t \implies t = \frac{2s}{u+v} = \frac{2 \times 120}{0+82} = 2.9268 \approx 2.9 \text{ s} \checkmark$	[1	1]
а	ii	$\overline{P} = F \frac{u+v}{2} = \frac{84 \times 10^3 \times 82}{2} = 3.4 \times 10^6 \text{W}$	[1	1]
а	iii	$a = \frac{82}{2.9268} = 28.0 \text{ m s}^{-2} \checkmark$ $F + C - R = ma \Rightarrow C = ma + R - F = 8100 \times 28.0 + 55 \times 10^{3} - 84 \times 10^{3} = 198 \text{ kN}$	[2	2]
b	i	Yes it is ✓ Because it travels on a straight line with constant speed/net force is zero ✓	[2	2]
b	ii	$F - Mg\sin\theta - R = 0 \checkmark F = Mg\sin\theta + R = 8100 \times 9.8 \times \sin55^{\circ} + 55 \times 10^{3} = 120 \text{ kN}$	[2	2]

4			
а	i	Light is an electromaghnetic wave ✓ The displacement of this wave is the electric field < <which has="" m<sup="" of="" units="" v="">-1>> ✓</which>	[2]
а	ii	The period is 1.6×10^{-15} s \checkmark So $\lambda = cT = 3 \times 10^8 \times 1.6 \times 10^{-15} = 4.8 \times 10^{-7}$ m \checkmark	[2]
а	iii	The separation of two consecutive peaks is a qaurter of a period \checkmark So the phase difference is $\frac{\frac{T}{4}}{T} \times 2\pi = \frac{\pi}{2} \checkmark$	[2]
b		The phase differenc at the center of a bright frnge is 0 and that at a dark fringe is $\pi \checkmark$ So neither since the phase difference is not 0 or $\pi \checkmark$	[2]

5			
а		$PV = NkT \Rightarrow N = \frac{PV}{kT} \checkmark$	[2]
		$PV = NkT \Rightarrow N = \frac{PV}{kT} \checkmark$ $N = \frac{2.0 \times 10^{5} \times 0.12}{1.38 \times 10^{-23} \times 310} = 5.61 \times 10^{24} \approx 5.6 \times 10^{24} \checkmark$	
b	i	$\overline{E}_{K} = \frac{3}{2}kT = \frac{3}{2} \times 1.38 \times 10^{-23} \times 310 = 6.42 \times 10^{-21} \approx 6.4 \times 10^{-21} \text{ J} \checkmark$	[1]
b	ii	$U = N\overline{E}_{K} = 5.61 \times 10^{24} \times 6.42 \times 10^{-21} = 3.6 \times 10^{4} \text{ J} \checkmark$	[1]
С	i	$U \sim T$ and $T \sim V$ since P is constant so $U \sim V \checkmark$	[2]
		So straight line through origin with positive gradient ✓	
С	ii	Real gas molecules have volume and so the graph cannot be	[1]
		extended to the origin ✓	

6			
а		There is an additional force acting between protons as well as neutrons ✓ The strong nuclear force is attractive and balances the electrical force of repulsion ✓	[2]
b		Proton number: 2 ✓ Nucleon number: 3 ✓	[3]
С	ï	Missing particle: antineutrino \checkmark $\Delta M = (3.016049 - m_e) - (3.016029 - 2m_e) - m_e = 3.016049 - 3.01602 = 2.0 \times 10^{-5} \text{ u } \checkmark$ $Q = \Delta Mc^2 = 2.0 \times 10^{-5} \times 931.5 = 1.86 \times 10^{-2} \text{ MeV } \checkmark$	[2]
С	ii	No ✓ The energy in (c)(i) is shared with the antineutrino ✓	[2]
d		$\frac{1}{2}mv^2 = E \Rightarrow v = \sqrt{\frac{2E}{m}} \checkmark$ $v = \sqrt{\frac{2 \times 0.45 \times 10^{-2} \times 10^6 \times 1.6 \times 10^{-19}}{9.1 \times 10^{-31}}} = 3.978 \times 10^7 \mathrm{m s^{-1}} \checkmark$	[2]
е	İ	The initial velocity is normal to the magnetic field ✓ The magnetic force is normal to the velocity and so provides the centripetal force ✓	[2]
е	ii	force \checkmark $evB = m_e \frac{v^2}{R} \checkmark$ Hence result	[1]
е	iii	$T = \frac{1}{4} \frac{2\pi R}{v} = \frac{1}{4} \frac{2\pi m_{e}}{eB} \checkmark$ $T = \frac{1}{4} \frac{2\pi \times 9.1 \times 10^{-31}}{1.6 \times 10^{-19} \times 5.0 \times 10^{-3}} = 1.8 \text{ ns } \checkmark$	[2]
е	iv	To change the KE and hence speed, work must be done on the electron ✓ The work done by the magnetic force is zero since the force is at right angles to the velocity ✓	[2]
f		$a = \frac{F}{m_e} = \frac{eE}{m_e} \checkmark$ $y = \frac{1}{2}at^2 = \frac{1}{2} \times \frac{1.6 \times 10^{-19} \times 5.8 \times 10^4}{9.1 \times 10^{-31}} \times (2.2 \times 10^{-9})^2 = 2.468 \approx 2.5 \text{ cm}$ \checkmark	[2]